1、圆与直线的位置关系 如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离 如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点 定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线 定理:圆的切线垂直经过切点的半径 推论1:经过圆心且垂直于切线的直线必经过切点 推论2:经过切点且垂直于切线的直线必经过圆心 如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点 直线和圆的位置关系只能由相离、相切和相交三种 2、三角形的内切圆 如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆 定理:三角形的三个内角平分线交于一点,这点是三角形的内心 三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。以旁心为圆心可以作一个圆和一边及其他两边的延长线相切,所作的圆叫做三角形的旁切圆 3、切线长定理 定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 4、圆的外切四边形 定理: 圆的外切四边形的两组对边的和相等 定理:如果四边形两组对边的和相等,那么它必有内切圆 |