知识点1 集合与元素
1、集合元素的三个特性:确定性、互异性、无序性;
2、元素与集合的关系:属于或不属于,用符号或表示
3、集合的表示法:列举法、描述法、图示法
4、常见数集的记法与关系图
知识点2 集合间的基本关系
知识点3 集合的基本运算
1、集合交并补运算的表示
2、集合运算中的常用二级结论
(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.
(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.
(3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)=(∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
知识点4 充分条件与必要条件
1、充分条件与必要条件
2、充要条件
(1)充要条件的定义
如果“若,则”和它的逆命题“若,则”均为真命题,即既有,又有,就记作。
此时,既是的充分条件,也是的必要条件,我们说是的充分必要条件,简称充要条件。
(2)充要条件的含义
若是的充要条件,则也是的充要条件,虽然本质上是一样的,但在说法上还是不同的,因为这两个命题的条件与结论不同。
(3)充要条件的等价说法:是的充要条件又常说成是成立当且仅当成立,或与等价。
知识点5 全称量词与存在量词
1、全称量词与全称量词命题
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫作全称量词,并用符号“”表示.
【注意】
(1)全称量词的数量可能是有限的,也可能是无限的,由有题目而定;
(2)常见的全称量词还有“一切”、“任给”等,相应的词语是“都”
(3)全称量词命题:含有全称量词的命题,称为全称量词命题.
【注意】
(1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种性质的命题;
(2)一个全称量词命题可以包含多个变量;
(3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。
如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线都互相平行”。
2、存在量词与存在量词命题
(1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在量词,并用符号“”表示.
【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有的”等;
(2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
【注意】
(1)从集合的观点看,存在量词命题是陈述某集合中有一些元素具有某种性质的命题;
(2)一个存在量词命题可以包含多个变量;
(3)有些命题虽然没有写出存在量词,但其意义具备“存在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“”,读作“非p”或p的否定.
常见正面词语的否定: