化学计算题是中学生在化学学习中比较头痛的一类题目,以下14种方法让你豁然开朗。
1. 商余法
这种方法主要是应用于解答有机物(尤其是烃类)知道分子量后求出其分子式的一类题目。
对于烃类,由于烷烃通式为CnH2n+2,分子量为14n+2,对应的烷烃基通式为CnH2n+1,分子量为14n+1,烯烃及环烷烃通式为CnH2n,分子量为14n,对应的烃基通式为CnH2n-1,分子量为14n-1,炔烃及二烯烃通式为CnH2n-2,分子量为14n-2,对应的烃基通式为CnH2n-3,分子量为14n-3.
所以可以将已知有机物的分子量减去含氧官能团的式量后,差值除以14(烃类直接除14),则最大的商为含碳的原子数(即n值),余数代入上述分子量通式,符合的就是其所属的类别.
[例1] 某直链一元醇14克能与金属钠完全反应,生成0.2克氢气,则此醇的同分异构体数目为 ( )
A、6个 B、7个 C、8个 D、9个
由于一元醇只含一个-OH,每mol醇只能转换出 molH2,由生成0.2克H2推断出14克醇应有0.2mol,所以其摩尔质量为72克/摩,分子量为72,扣除羟基式量17后,剩余55,除以14,最大商为3,余为13,不合理,应取商为4,余为-1,代入分子量通式,应为4个碳的烯烃基或环烷基,结合“直链”,从而推断其同分异构体数目为6个.
2. 平均值法
这种方法最适合定性地求解混合物的组成,即只求出混合物的可能成分,不用考虑各组分的含量。根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,可以求出混合物某个物理量的平均值,而这个平均值必须介于组成混合物的各成分的同一物理量数值之间,换言之,混合物的两个成分中的这个物理量肯定一个比平均值大,一个比平均值小,才能符合要求,从而可判断出混合物的可能组成.
[例2] 将两种金属单质混合物13g,加到足量稀硫酸中,共放出标准状况下气体11.2L,这两种金属可能是 ( )
A.Zn和Fe B.Al和Zn C.Al和Mg D.Mg和Cu
将混合物当作一种金属来看,因为是足量稀硫酸,13克金属全部反应生成的11.2L(0.5摩尔)气体全部是氢气,也就是说,这种金属每放出1摩尔氢气需26克,如果全部是+2价的金属,其平均原子量为26,则组成混合物的+2价金属,其原子量一个大于26,一个小于26.代入选项,在置换出氢气的反应中,显+2价的有Zn,原子量为65,Fe原子量为56,Mg原子量为24,但对于Al,由于在反应中显+3价,要置换出1mol氢气,只要18克Al便够,可看作+2价时其原子量为 =18,同样假如有+1价的Na参与反应时,将它看作+2价时其原子量为23×2=46,对于Cu,因为它不能置换出H2,所以可看作原子量为无穷大,从而得到A中两种金属原子量均大于26,C中两种金属原子量均小于26,所以A、C都不符合要求,B中Al的原子量比26小,Zn比26大,D中Mg原子量比26小,Cu原子量比26大,故B,D为应选答案.
3. 极限法
这种方法最适合定性地求解混合物的组成,即只求出混合物的可能成分,不用考虑各组分的含量。根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,可以求出混合物某个物理量的平均值,而这个平均值必须介于组成混合物的各成分的同一物理量数值之间,换言之,混合物的两个成分中的这个物理量肯定一个比平均值大,一个比平均值小,才能符合要求,从而可判断出混合物的可能组成.
[例3] 将两种金属单质混合物13g,加到足量稀硫酸中,共放出标准状况下气体11.2L,这两种金属可能是 ( )
A.Zn和Fe B.Al和Zn C.Al和Mg D.Mg和Cu
将混合物当作一种金属来看,因为是足量稀硫酸,13克金属全部反应生成的11.2L(0.5摩尔)气体全部是氢气,也就是说,这种金属每放出1摩尔氢气需26克,如果全部是+2价的金属,其平均原子量为26,则组成混合物的+2价金属,其原子量一个大于26,一个小于26.代入选项,在置换出氢气的反应中,显+2价的有Zn,原子量为65,Fe原子量为56,Mg原子量为24,但对于Al,由于在反应中显+3价,要置换出1mol氢气,只要18克Al便够,可看作+2价时其原子量为 =18,同样假如有+1价的Na参与反应时,将它看作+2价时其原子量为23×2=46,对于Cu,因为它不能置换出H2,所以可看作原子量为无穷大,从而得到A中两种金属原子量均大于26,C中两种金属原子量均小于26,所以A、C都不符合要求,B中Al的原子量比26小,Zn比26大,D中Mg原子量比26小,Cu原子量比26大,故B,D为应选答案.
4. 估算法
化学题尤其是选择题中所涉及的计算,所要考查的是化学知识,而不是运算技能,所以当中的计算的量应当是较小的,通常都不需计出确切值,可结合题目中的条件对运算结果的数值进行估计,符合要求的便可选取.
[例4] 已知某盐在不同温度下的溶解度如下表,若把质量分数为22%的该盐溶液由50℃逐渐冷却,则开始析出晶体的温度范围是( )
A.0-10℃ B.10-20℃ C.20-30℃ D.30-40℃
本题考查的是溶液结晶与溶质溶解度及溶液饱和度的关系。溶液析出晶体,意味着溶液的浓度超出了当前温度下其饱和溶液的浓度,根据溶解度的定义,[溶解度/(溶解度+100克水)]×100%=饱和溶液的质量分数,如果将各个温度下的溶解度数值代入,比较其饱和溶液质量分数与22%的大小,可得出结果,但运算量太大,不符合选择题的特点.
从表上可知,该盐溶解度随温度上升而增大,可以反过来将22%的溶液当成某温度时的饱和溶液,只要温度低于该温度,就会析出晶体。代入[溶解度/(溶解度+100克水)]×100%=22%,可得:溶解度×78=100×22,即溶解度=2200/78,除法运算麻烦,运用估算,应介于25与30之间,此溶解度只能在30-40℃中,故选D.
5. 差量法
对于在反应过程中有涉及物质的量,浓度,微粒个数,体积,质量等差量变化的一个具体的反应,运用差量变化的数值有助于快捷准确地建立定量关系,从而排除干扰,迅速解题,甚至于一些因条件不足而无法解决的题目也迎刃而解.
[例5] 在1升浓度为C摩/升的弱酸HA溶液中,HA,H+和A-的物质的量之和为nC摩,则HA的电离度是 ( )
A.n×100% B.(n/2)×100% C.(n-1)×100% D.n%
根据电离度的概念,只需求出已电离的HA的物质的量,然后将这个值与HA的总量(1升×C摩/升=C摩)相除,其百分数就是HA的电离度.要求已电离的HA的物质的量,可根据HA H++A-,由于原有弱酸为1升×C摩/升=C摩,设电离度为X,则电离出的HA的物质的量为XC摩,即电离出的H+和A-也分别为CXmol,溶液中未电离的HA就为(C-CX)mol,所以HA,H+,A-的物质的量之和为[(C-CX)+CX+CX]摩,即(C+CX)摩=nC摩,从而可得出1+X=n,所以X的值为n-1,取百分数故选C.本题中涉及的微粒数较易混淆,采用差量法有助于迅速解题:根据HA的电离式,每一个HA电离后生成一个H+和一个A-,即微粒数增大一,现在微粒数由原来的C摩变为nC摩,增大了(n-1)*C摩,立即可知有(n-1)*C摩HA发生电离,则电离度为(n-1)C摩/C摩=n-1,更快地选出C项答案.